A simple method for automated allele binning in microsatellite markers.
نویسندگان
چکیده
High-throughput fluorescent genotyping requires a considerable amount of automation for accurate and efficient processing of genetic markers. Automated DNA sequencers and corresponding software products are commercially available that contribute substantially to increased throughput rates for large-scale genotyping projects. However, some conceptually simple tasks still require time-consuming manual intervention that imposes bottlenecks on throughput capacity. One of these tasks is the conversion of imprecise DNA fragment sizes determined by commercial software programs to the underlying discrete alleles that the sizes represent. Here we describe a simple method for assigning allele sizes into their appropriate allele "bins" using least-squares minimization procedures. The method requires no special treatment of family data on plates, internal/external size standards, or electropherogram data manipulation. Tests of the method using the ABI 373A automated DNA sequencer and accompanying Genescan/Genotyper software resulted in accurate automatic classification of all alleles in >80% of 208 markers analyzed, with the remaining 20% being appropriately identified as requiring additional attention to laboratory conditions. Specific characteristics of different markers, including differences in PCR product size and inexact repeat lengths (e.g., 1. 9 bp for a dinucleotide repeat), are accommodated by the method and their properties discussed.
منابع مشابه
TANDEM: integrating automated allele binning into genetics and genomics workflows
SUMMARY Computer programs for the statistical analysis of microsatellite data use allele length variation to infer, e.g. population genetic parameters, to detect quantitative trait loci or selective sweeps. However, observed allele lengths are usually inaccurate and may deviate from the expected periodicity of repeats. The common practice of rounding to the nearest whole number frequently resul...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملDetection of Polymorphism in Ancient Tempranillo Clones (Vitis vinifera L.) Using Microsatellite and Retrotransposon Markers
Tempranillo is one of the most widely cultivated grapevine varieties in Spain. After several years of clone selection, some highly recommended old clones have been identified in terms of both their qualitative and production characteristics. This study was designed to discriminate among 28 ancient clones of the cultivar Tempranillo (Vitis vinifera). DNA samples from clones were analysed using t...
متن کاملInvestigation of Polymorphism of some Microsatellite Markers in Baluchi Sheep Population
Due to the importance of conservation and preserving indigenous breeds, Baluchi sheep was selected as the most populous breed of Iranian sheep and reliable pedigree. In this study genetic variation were analyzed with 15 microsatellites markers (BM737, BM1815, BMS332, BMS995, BMS2721, KD101, LSCV36, LSCV38, McM63, McM139, McM214, McMA1, McMA10, OarVH110, TGLA231) in a population of Baluchi ...
متن کاملAllelic diversity and association analysis for grain quality traits in exotic rice genotypes
The present research aims to study the association and allelic diversity of linked microsatellite markers to grain quality QTLs of 84 exotic rice genotypes. To this end, 9 microsatellite markers (RM540, RM539, RM587, RM527, RM216, RM467, RM3188, RM246, RM5461) were used in which a total of 61 alleles were identified with a mean of 6 alleles per locus. The polymorphism information content (PIC) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 7 11 شماره
صفحات -
تاریخ انتشار 1997